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Preface

The purpose of this thesis is to evaluate three possible
choices of the atomic Hamiltonian as the energy operator for
an atom in an electromagnetic field. Confusion between the
Hamiltonian and the energy operator, and misinterpretation
of operators in different representations have plagued stu-
dent and author alike. Hopefully, this thesis will provide a
document that can be used by others looking at the atomic
energy operator or at various forms of the Hamiltonian, since
there appears to be some confusion in the current literature.
There are possible follow on studies suggested by the paper,
primarily in experimental confirmation of the energy operator.
The reader is expected to have had at least a first course
in quantum mechanics.

I wish to sincerely thank Dr. Richard J. Cook for his
patience and assistance during the completion of this thesis,
and for originally suggesting the topic. I must complement
him on his thorough comprehension of the subject, a portion
of which he has passed on to me. Also, I extend my appre-
ciation to Dr. Charles H. Townes for suggesting that a charged
particle reacts equally to a longitudinal or transverse field.
Further, it is difficult to sufficiently commend my wife
Barbara for her support during the course of this program,
and her patience during the long hours of study. Finally, I
wish to thank Cascade for her understanding and constant

companionship during my studies.
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- Abstract
. Various forms of the atomic Hamiltonian are examined as

the energy operator for an atom in an electromagnetic field,
using the semiclassical approach. The unperturbed Hamiltonian
and the full atomic Hamiltonian have been favorite choices in
the past, but these give different predictions if treated as
the energy operator. The K-ﬁ versus %iﬁ coétroversy is
also examined and clarified. Both choices have conflicts

with observations or physical laws. Gauge invariance and the
Stark effect are considered. The multipole Hamiltonian is
presented and argued as the correct energy operator. Calcula-
tions for three photon absorption in a two level atom, using
time dependent perturbation theory, yield significant differ-

ences in the predictions for absorption rate and resonant

frequency.
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QUANTUM MECHANICAL ATOMIC ENERGY OPERATOR

I. Introduction

. Background

In guantum mechanics, the state vector |¢> describes a
physical system, and contains all information that can be

determined about that system. If the state vector is known

i SR I

for all time, then one can easily predict or explain observed
physical phenomenon. A fundamental postulate of quantum

mechanics is that the Schrodinger equation,
ia O S
1h§€|¢> = H(t) |y> (1.1)

governs the time evolution of the state vector, where H(t)

is the Hamiltonian operator for the system. The solution of
this equation provides much insight for atomic and molecular
n processes, particularly interactions with light. Unfortu-
| nately, the Schrodinger equation is difficult to solve, and

has exact solutions for only a few simple cases. Generally,

] approximation methods, such as perturbation theory, are used
to arrive at a solution which gives a satisfactory explana-
tion to observations.

!! In the Schrodinger equation, the Hamiltonian generally

B represents the total energy of the system. The exact quantum

;- mechanical form usually originates from the classical Hamil-

”

tonian. In atomic systems, the form of the Hamiltonian is
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important for predictions, often through perturbation theory,
of transition rates, lineshapes, multiphoton processes, and
Stark shifts. Different choices for the Hamiltonian can
result in significantly different predictions. The key
question is which Hamiltonian actually represents the energy
of the atom. This has been the source of a great debate and
misconception within the scientific community.

Some confusion arises by the common treatment of the
Hamiltonian and the energy operator as equivalent. 1In fact,
these quantities are very different in quantum mechanics
(1:326; 2). The energy operator represents an observable, so
its expectation value is the same in any representation. 1In
general, the Hamiltonian is not an observable. Under a
transformation to another representation, it can describe
something other than the energy. This subtle difference is
important since the eigenstates of the energy operator
represent the stationary states of the atom. Care must be
taken when defining what form of the Hamiltonian is to be the
energy, a physical quantity, in a particular representation.
Its expectation value must be invariant under transformation.

For the interaction of light with matter, a central
issue is which form of the Hamiltonian represents the true

energy of the atom (or what is the form of the atomic energy

operator). Historically, there have been two choices for
the energy operator in the semiclassical treatment. Semi-
classical refers to quantizing the atom, but treating the

electromagnetic field classically. The unperturbed atomic

e e
i YT IPR PGP R I
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Hamiltonian,
~ <2
i - B
H 2m

is most often used to represent the atom's energy, where

+ V(D) (1.2)

N

~

I p 1is the canonical momentum operator and V 1is the coulomb
potential due to the nucleus. Others use the full atomic

Hamiltonian,

-

X(?,t)) + V(D) (1.3)

o oJB
[}
Ir—'

—_—

>
1
0o

D] where A is the vector potential and V is the total scalar
potential. Each of these forms results in a different inter-
action Hamiltonian when the atom is in an electromagnetic

. ‘._‘ field. The first results in the minimal coupling Hamiltonian,
which, in perturbation theory, has transition matrix elements
of the form <n|-§;§-§[m> , between states of the unper-

i turbed atom., The latter yields the electric dipole Hamil-

tonian, which has matrix elements <n|-e§-§{m> . The

difference has caused a great deal of confusion as to which

] one to use or if there is indeed a difference.

For several years, the two forms were considered equiva-
lent since they are related to one another through a unitary
[, transformation (3). Lamb (4:268), however, noted that it is -

important to choose the correct form since there is a differ-

AR

ence in the lineshape predictions. Because of the gauge
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g dependence of A+p , he favors the r+E form. On the
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other hand, textbooks routinely 2xpand the full Hamiltonian,
Eq (1.3), and treat the X-; term as a pertubation (5:459;
6:400-401). It seems well stated by Worlock (7:1327) that,
"the choice is largely dictated by taste and convenience."
The Tr+B form is found to be more useful in atomic and
molecular applications, where the K-; form is used for
energy bands in crystals. For single photon resonant ab-
sorption, there is essentially no difference in the predicted
rates; however, the two give different predictions for two-
photon absorption (7; 8). Although it is evident that
distinct differences exist, the primary matter of which equa-
tion represents the energy of the atom is still unresolved.

A further point of confusion is the apparent equivalence
of the two forms under a unitary transformation. Several
authors have shown that «<nj- %EK'§|m> and <n|-e§-f|m>
will yield the same results if properly interpreted (9; 10;
11). Under a unitary transformation, the basis states of a
given representation change. Thus, even though the eigen-
states in each case have the same form, they do not represent
the same state. With this interpretation, the two forms are
indeed equivalent. 1If the states were considered the same,
the gauge dependence of A would cause the matrix to be
gauge dependent. A change of gauge manifests itself as a
unitary transformation, in such a way that the matrix is
invariant, and the two forms are equivalent (12). While
these arguments are essentially correct, they do not fully

answer which form of the Hamiltonian represents the energy

R
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of the atom.

Until the atomic energy operator is correctly identified,
misinterpretation and confusion will face those studying or
applying gquantum mechanics to light and matter interactions.
Journal articles still appear that have varying interpreta-
tions of the energy operator (8; 13; 14). Perhaps in pre-
vious work, where the field intensities were relatively small,
the differences were unimportant. Now, with high power lasers
available that can produce strong fields, the differences will

have a much greater impact.

Thesis Objective

There is an obvious need for clarification on the exact
form of the energy operator. Accurate predictions for
several atomic processes depend on the correct choice. The
primary objective of this thesis is to examine analytically
possible choices for the energy operator of an atom in a
time varying electromagnetic field. A second objective is to

clarify the controversy over the equivalence of the A-p

and %-E forms of the transition matrix elements. The
second objective comes as a natural prerequisite of the first,
The choices for the energy operator include the two already
introduced, Egs (l1.2) and (1.3), but because of certain
shortcomings of each, a third choice is presented. This is

the multipole expansion form of the Hamiltonian,

A 32 o 2 ‘-‘
H = %E + V(r) - er*E + . . . (1.4) _.1
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where the terms beyond the unperturbed part are the energy of
an electric and magnetic multipole. This is an infinite
series, but for practical applications, it is truncated to a
few terms. Here only the electric dipole term is considered,
but in those instances where the magnetic dipole or electric
quadrapole is important, the corresponding terms should be
included. Treatment of the multipole expansion form as the
atomic energy operator has as of yet been unexplored.

It is quite clear that due to the extensive nature of
the controversy, the cnly true test of a particular form of
the energy operator is ultimately to be confirmation by
experiment. As part of arguments for the multipole form,
this thesis details calculations for a three-photon absorp-
tion experiment. There argasignificant differences between
the predictions of the three possible energy operators.

Final proof of this thesis will have to wait for such an
experiment to be performed, but the objective of examining

possible choices of the atomic energy operator is met.

Assumptions

The thesis considers the semiclassical approach in the

analysis, for reasons of simplicity. The fuvll quantum
apprcach is deemed unnecessary for the arguments presented,
and would significantly increase the complexity. In addition,
only the electric dipole term of the multipole expansion 1is

considered. The magnetic dipole or electric gquadrapole terms

Ao ‘A_A.A_A.L_“

could easily be incorporated into the model, if necessary.

b ol




fﬁ For ease of notation, the bra-ket convention is used
throughout.

The experimental calculations use a general two level

system as its model. Several physical systems can be approx-

imated as a two level system, with good results. The per-

turbation calculations become manageable with this assumption.
> Finally, in the calculations, the effects of spontaneous
emission is ignored. Again, this serves to reduce the diffi-

IE culty without hampering the arguments.

General Approach

The second thesis objective is to clarify the contro-

versy between the unperturbed Hamiltonian, Eq (l1.2), and the
full atomic Hamiltonian, Eq (1.3). Chapter II discusses the
origin and application of the two Hamiltonians. Emphasis is
on the different set of basis states each defines when con-

sidered as the energy operator. The matter of the equivalence

of the transition matrices is also covered here.
Chapter III addresses the shortcomings of the first two
choices for the energy operator., The true energy operator

must be gauge invariant and must account for the Stark effect ;

N P UD” B I R ]

for both longitudinal and transverse fields. Considering the

unperturbed Hamiltonian as the energy operator results in

gauge dependent predictions, and it does not show a Stark

R |
4

shift. The full atomic Hamiltonian has a Stark shift only

PR AN
[ A

for a longitudinal field, which violates special relativity.
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The multipolar Hamiltonian is presented in Chapter 1IV.
The justification is based on the classical multipole poten-
tial and that the Hamiltonian produces the correct Lorentz
force in the classical 1limit, The Hamiltonian is gauge in-
variant and has a Stark shift for the total field. Finally,
the transition matrix elements have a much different form
than the previous cases, which should result in new predic-
tions.

Chapter V contains a perturbation analysis of the three
cases for three photon absorption. The calculations show
order of magnitude differences in the absolute rates, and
shifted resonant frequencies. These results provide a
possible means to experimentally confirm the correct energy

operator.

ca NP S SIS T Yl G Y AP G . PPN PR o . P -~

’
2a

At

R 4
'




IT. Historical Controversy

Origin of the Hamiltonians

Classically, the Hamiltonian of an isolated single elec-

tron atom is represented by the sum of the electron's kinetic

and potential energy. In the quantum formalism, the physical

quantities are replaced by operators to arrive at

~ ~2 ~
= B- T
Ho 5m + V(r)

A

(2.1)

the unperturbed Hamiltonian. 5 is the canonical momentum

operator, - ihV , and V 1is the coulomb potential due to the

2 ~

nucleus, - % . H defines a complete set of basis states

0
through the time independent Schrodinger equation,

A

Ho|n> = E_|n>

In> are the basis vectors which can describe the state

vector:

| > =Zan|n>

n

(2.2)

(2.3)

Each of the basis states is also called a stationary state,

and En represents the energy of that state. Most authors

use these basis states for calculations of transition rates,

and En as the energy levels of the atom. This method, which

fete Ny
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will be covered later, is the simplest approach.

When the atom interacts with an electromagnetic field,
the total Hamiltonian must now include this interaction. The
most common representation of this Hamiltonian is again de-
rived from classical arguments. The nonrelativistic
Lagrangian for a single electron in an electromagnetic field
is

2

mv

L=—2—-e¢+ (2.4)

alo
>|
<

where ¢(r,t) and A(r,t) are the scalar and vector poten-

tials (15:222). The canonical momentum is then

p; = %%; =mv; + % A, (2.5)
The Hamiltonian is defined by
H =;Pivi -L (2.6)
which reduces to
H=3 3- 252 4 o (2.7)

By using operators in place of the physical quantities, the

quantum mechanical form of the total Hamiltonian emerges:
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.2
KG,t)) + oo (T,t) (2.8)

o P
'
aQjo

H= Lo
H = 2m(

In the semiclassical treatment, the field variables remain as
C-numbers. The scalar potential here is the total scalar
potential, which includes the coulomb potential of the

nucleus,

The primary justification for using Eq (2.8) as the

total Hamiltonian is that the equation of motion for the posi-

tion operator has a form that corresponds to the classical } ﬁ
Lorentz force (6:178-179). Using the Heisenberg equation of ‘VQ
motion, 5"?
ax, R j

i_1 |2 51 =41 - & o

3t ~ In [xi'H] =3 Py — <2y (2.9a) .

dp A A - ~:.

1 )
7 =i [ed] = - 2 (2.9b) L
axi .

The brackets refer to commutation. From these relations, in

a non-trivial derivation, the results become L»%
d2%=e§+;g §x§_§X£ (2.10)
a 2 2 c\dt dt B
t .‘.:1
where ;Tﬁ
= o . LlaK
E=-v7p -z (2.11a)




]

P- -
2

A 1A

. v &

P S

B=YVxA

(2.11b)

Perturbation Theory

In most applications, the Schrodinger equation is impos-
sible to solve exactly, so approximation methods are often
used. A common method for time dependent Hamiltonians is
perturbation theory, in which the total Hamiltonian is put in
the form of an unperturbed Hamiltonian and a perturbation

term:
H=8 +H (2.12)

The unperturbed Hamiltonian satisfies the time independent

Schrodinger equation, resulting in a set of basis states.

Ho|n> = En|n> (2.13)

The set of basis states represents the stationary states of

the atom, and depends heavily on the choice for Ho. The
state vector or wave function is then expanded in terms of

these basis states:

Y =zan(t) |n> e~ 1Ent/M (2.14)
)

The time dependent coefficients, an(t) , are interpreted such

that P_ = lan|2 is the probability of being in state |n> .

12
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Substituting Eq (2.14) into the Schrodinger equation,

(1.1), and making use of Eq (2.13),

: _ 1 o iw, t
a,(t) = ih;<anI|m> ap(t)e ‘nm (2,15)
where Wom = (En - Em)/h . These equations define the time

evolution of the state vector in terms of the a, coeffi-
cients. The matrix element <n[§I|m> represents the trans-
ition from state |[m> to state [n> .

The transition process depends heavily on the interaction
Hamiltonian and the precise eigenstates chosen as the basis,
Special care must be taken in this latter point. 1Ideally,
and what is most often assumed, is that the basis states
represent the true energy eigenstates of the atom, and the
eigenvalues En are the true energy of the states. The
Hamiltonian chosen to represent the energy of the atom, ﬁo
in this case, determines the basis states. It also determines

the form of the interaction Hamiltonian. The scientific

community appears to be split over which form of the Hamil-

tonian to use as the energy operator. The two major choices

A

are the unperturbed Hamiltonian HO , Eq (2.1), and the full
atomic Hamiltonian H . Eq (2.8). They each yield a differ- '51

ent set of eigenstates and a different interaction Hamil- R

-

tonian.
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H, as the Energy Operator

If the unperturbed Hamiltonian is the energy operator,

ﬁi then the energy eigenstates satisfy
H°|n> = En|n> (2.16)

Expanding the total Hamiltonian, Eq (2.8), for an atom in an

electromagnetic field,

5 A (2.17)

assuming that A can be considered constant over the extent

. of the atom, so that A and p commute. This is the electric
- @
EI \e dipole approximation. Note that A(t) still varies with

time, and the potential ¢ is the coulomb potential of the

nucleus. The interaction Hamiltonian is then

2
— a2 (2.18)

2me

The expanded form of the Schrodinger Egq (2.15) becomes

~ 2 .y
: 1 e = = e 2 i% ¢
a(t) = = E <n|=-=—23a.p + Almsa_e” mn (2.19) R
ik = I mc 2mc2 l m -

The A2 term in the transition matrix adds a common phase to

the amplitudes a, i thus, it can be ignored. Most texts

o B IBY
1
1

disregard the term since it is small compared to the A -
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term (6:400). The transition matrix reduces to

<n [- S~ A.p | m> ; this is the minimal coupling inter-
mc

action form.

The & . é form of the transition matrix is commonly
used in calculations to predict transition rates, lineshapes,
etc. The basis states, In> , are assumed to be the eigen-

A~

states of the energy operator, Ho in *his case, and the
transitions are between these states. However, one obvious
issue arises. A 1is the vector potential, which is not
unique for a given electromagnetic field. A different choice

of potentials,

(2.20)

o
0
b
+
<
9}
©
»
"
©
|
Q-
Q
ala

where G(?,t) is an arbitrary function, yield the same E
and B fields, according to Eq (2.11). These gauge trans-
formations do not alter physical quantities, but transforming
A , in this case, changes the value of the transition matrix.
The interpretation of the matrix elements as representing
transitions between the energy eigenstates results in gauge
dependent predictions, although this is a common practice in

calculations.

H as the Energy Operator

Another choice for the energy operator is the full atomic
Hamiltonian, Eq (2.8). This defines a different set of basis

states which are time dependent, since the Hamiltonian is

15
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time dependent:
H(t) [n(t)> = E_|n(t)> (2.21)

It will be shown that the energy eigenvalues are constant and
equal to the eigenvalues of the unperturbed Hamiltonian.

To justify use of the full Hamiltonian as the energy
operator consider an energy operator equal to the sum of the

) potential and kinetic energies

mGz + V(?) (2.22)

23]
1}
Nj=

o} B
[}

aQjo
il

In an electromagnetic field, % = % ( ) and V(r) = eo,
which upon substitution, is Eq (2.8).

I ‘«-. The eigenstates of the energy operator are derived by a
unitary transformation, § , of the time independent Schro-
dinger equation. If ﬁ does indeed represent the energy of

- the atom, then the eigenvalues are unchanged in the trans-

formation, and Egq (2.21) transforms as

' A

H [n>* = E [n>* (2.23)
where

l A ~ A~ ~

H = S H S+ (2 . 24)
K in>* = Si{n(t)> (2.25)
:: 'fﬁ
: 16 NS
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With the unitary transformation defined as

T -

S = exp [- ier - X(t)/nc] (2.26)
then
A » ?LZ-
H =5+ eo (2.27)

i A »

H has the same form as the unperturbed Hamiltonian, and has
eigenstates |n>* that are of the same form as the previous
case., However, the unitary transformation causes a change of
representation, so the new eigenstates are the same as the
unperturbed states. The true energy eigenstates are |n(t)> ,
which are related to the unperturbed eigenstates by

In(t)> = s*|n>» (2.28)

Again, the energy eigenvalues are the same, which can cause
some confusion, but ﬁ and ﬁo result in very different
sets of energy eigenstates.

Choice of ﬁ as the energy operator also results in

different physical predictions. Expanding the state vector

in terms of the energy eigenstates,

_iEpt/n

lp(t)> =) c (t)|n(t) > e (2.29)
m
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Substituting Eq (2.29) into the Schrodinger equation,

iy
: mnt
C (t) = -;m(t) I%E | m(t)>C_(t)e (2.30)
Using Eq (2.28) this becomes
. 2 iw
C,(t) = }L—h';*<n| - er-Elm>*Cme mnt (2.31)

The position operator has the same form in both representa-
tions, since it is unaffected by the unitary transformation.
The transition matrix can then be written as <n{-e§-f|m> ,
where the eigenstates are those of the unperturbed Hamil-
tonian. This is the electric dipole interaction form.

The Schrodinger equation for the two Hamiltonians,
Egs (2.19) and (2.31), have the same form except for the
matrix elements, or more specifically, the interaction Hamil-
tonians. In both cases, the matrix elements are calculated
with the unperturbed eigenstates, even though they are differ-
ent than the energy eigenstates for ﬁ . The minimal coup-
ling form is gauge dependent in this interpretation, due to
its dependence on the vector potential R . On the other
hand, the electric dipole form is a function of the electric
field, which is gauge invariant. If the matrix elements are
to describe some physical process, the value cannot depend on

the gauge. This demonstrates a clear difference between these

two forms of the energy operator. Unfortunately, there is -

., "','.‘."..‘
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still much confusion since the two forms are related by a
unitary transformation. In guantum mechanics, physical pre-
dictions are not altered by unitary transformations; thus,
the two forms have been considered equivalent. Yet, it is
obvious that there is a difference. This problem deserves
some investigation due to the wide spread misuse of this

equivalence.

Equivalence of A.p and r-E

Several authors have addressed the equivalence of the

~ ~

A-p and T-E forms of the transition matrix (3; 9; 11; 12),
but due to widespread misinterpretation and its relevance to
this thesis, it deserves mention here. The main problem is in
the interpretation of the "unperturbed" basis states in each
transition matrix.g It is assumed that both refer to the same
set of basis states, but this is not the case. The numerical
values are the same, but they are states in two different
representations.

Consider first the full atomic Hamiltonian, Egq (2.8),
L 5-2%524 e (2.32)
2m c ‘

In this equation, p 1is the canonical momentum operator, not

the kinetic momentum. The kinetic momentum is given by

3
<
I
o
'
[ N1
Z

(2.33)

19




Expanding Eq (2.32) in the electric dipole approximation,

A 22 _ 2
H = % + e$ - r_i.g A.p + € A2 (2.34)

The first two terms are in the form of Ho , the unperturbed
Hamiltonian, but the true unperturbed Hamiltonian differs in

~

that the canonical momentum 5 is also the kinetic momentum.
Expanding on the basis states of HO as before, the Schro-
dinger equation becomes

. ~ iw__t
S = A - & 7.7 nm
a, = ih};}nl — A p|m>ame (2.35)

The electric dipole form of the Hamiltonian can be de-
rived by applying the unitary transformation of Egq (2.26) to

the Schrodinger equation. The Schrodinger equation becomes

in v = s (2.36)
where

>~ = g‘w> (2.37)

R R (2.38)

Substituting Eq (2.32) into (2.38),

20
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A a= &- _ __._

H 5= + ed er+E (2.39)
where E 1is given by =1/c 3A/3t . Again, the first two
terms have the form of the unperturbed Hamiltonian. Expanding
on the basis states of ﬁo ’

A iw_ t

_ 1 - &T.F nm
= i3 n<n| er+E|m> a e (2.40)

n

Thus, it appears that Egs (2.35) and (2.40) are identical
except for the transition matrix. This misinterpretation has
plagued scientists, and lured them to believe that it is
equivalent to use either form (7:1327).

Upon careful examination, two mistakes emerge. In the
unperturbed Hamiltonian of Eq (2.39), 5 actually represents
the kinetic momentum, unlike the earlier case. Consider the

unitary transformation of the kinetic momentum,

mv = § mv st = s(p - % K)S+ (2.41)
é and ﬁ commute, but
é\.ﬁ_l" 3

p=pS + ih ==
axr
Z A e = 7

=p S + = A S (2.42)

21 ;




Thus,

mv = p (2.43)

The basis states of Eqg (2.40) are distinct from the those of
Eq (2.35).

The second mistake involves the interpretation of the
coefficients a, . It was assumed that in both cases, a,
represents the expansion coefficients of the state vector on
the unperturbed basis states. The transformation of the state

vector must also transform the basis states. This is a mis-

take often made in the literature (13:625,631).
[v>~ = s|u> =§;ans|n> (2.44)
Recall Egq (2.25)
in(t)>” = sin> (2.45)

Thus, in the second case, a, are the expansion coefficients
of the time dependent basis states.

Egs (2.35) and (2.40) are indeed related to one another
and can be considered equivalent if properly handled. Physi-
cal predictions will then be invariant in either case using
the correct interpretation. Unfortunately, this still does
not address the problem of the form of the atomic energy
operator. The two possibilities still exist; the unperturbed

A~ -~

Hamiltonian HO or the full atomic Hamiltonian H . A better
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argument currently exists for H , since treating H_ as the ffi

~

energy operator results the transition matrix involving A-p , ‘i?

which is gauge dependent.

ey Chahaliun A g e
L o . lv,<" ‘. »',
']
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III. Limitations of H, and H as the Energy Operator

The correct choice of the energy operatcr must be consis-
tent with experimental observations and physical laws. The
results of physical predictions must be gauge invariant, since
the choice of gauge is arbitrary. Observed phenomenon such as
the Stark effect must also be accountable in the theory.
Finally, the theory must be consistent with the theory of
special relativity. Neither H nor H meet these require-

o
ments, and thus do not accurately represent the true energy.

Gauge Invariance

Electric and magnetic fields can be described in terms
of the vector and scalar potentials, Eq (2.1l1). However, the
potentials arébnot unique; a different set of potentials from
Eg (2.20) yields the same fields. This demonstrates that the
potentials are unphysical, and only the fields are important
physically. An additional condition, a gauge condition, can
be imposed on the potentials without affecting the outcome.

An often used condition is the coulomb gauge:

7 «A=0 (3.1)
With this condition, the operators A and S commute, and
the electric field can conveniently be expressed in terms of
its longitudinal and transverse components (16:125). The

longitudinal component of a vector field, V , 1s defined as

24
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(3.2)

The transverse component obeys

V « Vo, = 0 (3.3)

The electric field, in coulomb gauge, is then E = E_ + E_, ,

L T
where
Ep = - V¢
T o= - 134
T c st (3.4)
'LQ The magnetic field is always transverse:
B=8B,=VxA (3.5)

Expressing the full atomic Hamiltonian in this gauge is use-
ful, although not necessary. Any accurate physical model does
not depend on the gauge chosen for its predictions.

Since the full atomic Hamiltonian, Eq (2.8), depends on
the potentials, its behavior under gauge transformations
should be understood. The Schrodinger equation is form invar-
iant under a gauge transformation (1:323-325), meaning that

Eq (1.1) takes the same form in any gauge:

25
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i —l—(fo' - X‘(t))z + ed () (3.6
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Although E does not change form in the new gauge, it repre-

. -

sents a different quantity. Remember, p is the canonical o

A~
—

momentum, which is not a true observable., The change in p
results in a change in the basis states in the new representa-
tion if the eigenvectors of ﬁo are used,

A gauge transformation is equivalent to a unitary trans-

formation to another representation (1:321), given by

he

.

U = exp [i £ G(?,t)] (3.7) -]

where G 1is an arbitrary function which determines the

L
e s
R S U

~

gauge. For an operator, T , to represent a physical quan-

tity, the following condition must be met:

[Cy—

>
]
>
n
>
3>
(=)

(3.8)

where f‘(X‘,@’) is the operator in the new gauge, and Tu

.
N

K

is the transformed operator. For example, consider the true ' f
momentum given by Eq (2.33), o
_‘= :.-_p--—l - :--e-_--e. ::':

mv (p =z A) (p -2 A =2 V6 (3.9) o
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(3.10)

<P

As expected, the true momentum is gauge invariant, v’ o=

u
For a Hamiltonian, this is not generally true, unless it is

the true energy operator of the atom.
If Hy is considered as the energy operator, then its
exact meaning changes based on the interpretation of p

in the given representation. Even though the form remains

™ ~

the same, Ho is an unphysical quantity, as is 5 . Ho is

gauge dependent in this manner. Another way to see this
result is to consider the transition matrix element,

<n|A.p|m> . The basis states are the energy eigenstates of

H, , but A is gauge dependent. Thus, physical predictions

~

become gauge dependent if Ho is treated as the energy

operator.
Next consider the full atomic Hamiltonian, ﬁ , as the
energy operator. Again, the operator must be gauge invariant
to represent a physical quantity. At first glance, the opera-
tor appears to be gauge dependent because of the gauge trans-
formation of the scalar potential in H :
qe2 Ll 5. 8342 _ 236
H” =57 (p c A )T+ et c 3t
=i -2 36 (3.11) =
=Py T o a2 : 0
3t ol
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This is true only if the potential, ¢ , is the scalar poten-
tial. However, in the energy operator, the potential is ac-

tually the coulemb potential,

q.
=Z - (3.12)

which is gauge invariant since charge g and position «r
are invariant quantities. Hence, the Hamiltonian is also
gauge invariant.

The total potential can be expressed as the sum of the

potential due to the nucleus, ¢o , and that due to external

sources, doxt

b = ¢o + $ext (3.13)

The second term is then expanded with a Taylor series to

arrive at a multipole expansion,

6(0) + V0)er + ...

(=4
i

ext

$(0) - E

L'+ ... (3.14)

Ignoring the constant, ¢(0) , and the higher order terms

-2%% 4 ep, - eToE (3.15)

Tl

qHo= Lo
H = 2m {
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Thus, the full atomic Hamiltonian is shown to be gauge

invariant when handled in this way. Note also, that the

A
transition matrix «<n|-er:E|m> , which results from the choice

~

of H , is also gauge invariant, since it depends upon the

electric field, and the states |n> are gauge invariant.

Stark Effect

The Stark effect is a shift in the atomic energy levels
for an atom in an external electric field, and has been widely
observed and reported. The true energy operator for the atom
must reflect this energy shift. The unperturbed Hamiltonian
contains no terms which include external fields; hence, its
energy eigenstates are independent of the external fields.

No Stark effect would be observed if ﬁo were the atomic
energy operator. The external field would simplf‘cause trans-
itions between the eigenstates. The lack of a Stark shift is
a strong argument against the unperturbed Hamiltonian as

the energy operator.

The full Hamiltonian, Eq (3.15), includes the term

A~

-er-EL

external field., Transforming the energy operator, Eq (3.15)

, SO the energy eigenvalues are a function of the

with the unitary transformation of Eq (2.26),

jo s
A
]
[72 ]
o o)
0>

HO -e?.EL (3.16)
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The energy eigenvalues of H~“ , which are equal to those of

H , exhibit a dependence on the longitudinal portion of the

i electric field. The eigenvalues do not depend on the trans-
verse component. A transverse field causes transitions
f between the eigenstates. This conclusion is, however,

erroneous.

A charged particle cannot distinguish between the longi-
tudinal and transverse portions of the electric field. If
taken individually, the components are unphysical. Only the
two combined together have a physical consequence. It would
seem that the atom should then exhibit a Stark effect for
both the longitudinal and transverse portions of the electric
field.

The longitudinal electric field in coulomb gauge 1is

EL = -V = -v;——q—i— (3.17)

|T-E, |

which is the instantaneous coulomb field. This shows the
unphysical nature of EL , Since an electric field travels
at the speed of light, not instantaneously. If the Stark

effect were dependent on the longitudinal field only, then

'
|

there could be instantaneous knowledge of change in a charge
distribution at a large distance, in violation of special

relativity. Thus, the Stark effect must depend on the total
electric field. 1In the total electric field, the unphysical

portion of the transverse component cancels the unphysical :Vd
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pért of the longitudinal component, insuring that the field
obeys special relativity (16:125; 17). The total Hamiltonian,
which exhibits a Stark shift for only the longitudinal field,

is then not the proper choice for the energy either.

i Another Hamiltonian
The two choices normally considered for the energy opera-
tor have been shown to have some deficiencies. A strong argu-
- ment exists against the unperturbed Hamiltonian because of its
gauge dependence and lack of a Stark shift. The full Hamil-
tonian, although gauge invariant, shows a Stark shift for a

- longitudinal electric field only, which is in violation of

[
-

special relativity. These arguments suggest that there must
be yet another form of the Hamiltonian which represents the
l "’ energy of the atom.
A reasonable choice is the full multipolar Hamiltonian,

which consists of the unperturbed Hamiltonian plus the multi-

i pole energy expansion. In the electric dipole approximation, ;"‘

this is

A

+ V(T) - er - (EL + E 3.18)

>

[}
N >
S 8

7’

This form reacts to both the longitudinal and transverse

electric fields equally; thus, there is no violation of spe-

h cial relativity. In addition, if V(¥) is the coulomb -
potential of the nucleus, the Hamiltonian is also gauge

: invariant. Thse topics are discussed in more detail in

i

the next section., o
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IV. Multipole Hamiltonian as the Energy Operator

The Multipole Hamiltonian *

The multipole form of the atomic Hamiltonian is usually
derived from a unitary transformation of the full atomic

Hamiltonian, Eq (2.8) (16:166-167; 18). The final result is “o.
~ 1 r:. 1 ~ _ = 2
H =5 [P-es AL xB(Ar)dx

1

+ eg(r) + e f T « Ex(AT)d) (4.1)

(o]

where ¢(r) 1is the instantaneous coulomb potential due to S
the nucleus and any external charges. This Hamiltonian

depends on the electric and magnetic fields instead of the

potentials. Expanding the integrals and the potential, $(r) ,

results in the convential multipole expansion. Note that the

expansion of the potential contains the longitudinal electric -;1
field, EL ; thus, the Hamiltonian depends on the total _53
electric field. -

It is the intent here to show justification for selec- N 1

ting Eq (4.1) as the energy operator based on the classical

energy arguments and the requirements presented in the pre-

vious chapter, Detailed calculations for the full expansion
are not included, since this thesis deals solely with the

electric dipole portion for simplicity. The method can be

I O PN S S S S

extended to additional multipole terms as necessary.
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Even though two Hamiltonians are unitarily related, it is

conceivable that just one represents the energy operator.

| .

The interpretation of dynamical variables changes under a
transformation (19), so the two Hamiltonians can mean very
i different things. Recall that under a unitary transformation,

the Hamiltonian transforms as

R ot (4.2)
On the other hand, the energy operator transforms as
(4.3)

I \vo If a Hamiltonian is the energy operator in one representation,
the transformation of that Hamiltonian, under Eq (4.2), can
represent something much different in another representation.

i This allows selection of Eq (4.1) as the energy operator
despite the fact that it is unitarily related to Eq {(2.8),
which has been shown not to accurately represent the true

i energy of the atom.

For the derivation of the electric dipole form, consider
the transformation of Eq (2.8) with the electric dipole

3 approximation, where the vector potential A is a function

of t only. The full Hamiltonian is

. N 2 - 2 2
" i-L (5 -%A(t)> + eo (D) (4.4)
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In Eq (4.2), let the unitary transformation be

é = exp [- i & % . X(t)] (4.5)

~

Using the fact that S commutes with ¢(r) and A(t) , and

that

>

| ou—
er I)
-

§J = - in 22 (4.6)

Q>
"D

the electric dipole form of the Hamiltonian becomes

. 22 n ~
* - B 7Y - o . B
r H'= 5= + e¢(r) er « Ep (4.7)
r —
= _ _ 9A . . . ,
where ET = - 33 is the transverse electric field in coulomb

gauge. Expanding ¢(r) , as in Egs (3.13) and (3.14),

ns =2 A~ - -
H = %5 + e, - er .« (E + Ep) (4.8)

where 43, is the coulomb potential of the nucleus. This is f -]

the dipole form of the multipole expansion; it contains both

components of the electric field. Choosing Eq (4.8) as the ]
energy operator is a different case than selecting the full j
atomic Hamiltonian, Eq (4.4). -

To justify use of the multipole form of the Hamiltonian, ?3?
consider the classical definition of energy, the sum of ﬁf;
kinetic and potential energies, The kinetic energy can be ;:;

34
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written as p2/2m ; in this case, p =mv . The potential
energy of the electron depends on the coulomb potential of

the nucleus, and the electromagnetic field:
V(r) = e, + Vg + Vg (4.9)

The potential energy of an electron in an electric field is

given by the expansion (20:101)

3E. (o)

Vg = e &o) - er *E(o) = % Z Zoij-?}%- + e (4.10)
i3 i

These are the monopole, dipole, and quadrapole terms of the

electric multipole expansion. ©Q is the quadrapole moment

ij
tensor. Similarly, the magnetic multipole energy can be ex-

panded (20:148-150). For the magnetic dipole, m

!’
VB=-m' B + eeco (4-11)

Thus, the total energy can be written as

+[-E.§+...] (4.12)

This is of the same form of the multipole Hamiltonian, when

operators are used in place of the physical quantities.

35

..........................
.............

B o R
P .1'1."'_".

- e =

'.’-‘.".' <L e
2 et A S A Aa o ntatal

K L
RS QP S




|
4
]

) ANPE

T rrv"—'fl‘ o "v.‘nv"v—‘v. '
B . PP T P

a
]

BAACEM AR B Nt AN i e e BN R A b i el Sttt Ga oA Ra il S £ o S AASIMAC S G A AICEIVA I A e A~ B G il ol g

Based on these arguments, the Hamiltonian of Eq (4.8) is _
a reasonable choice for the energy operator in the electric t;ﬁ
dipole approximation. The electric dipole approximation is T
valid when the electric field has a negligible variation over
the extent of the atom. If electric quadrapole or magnetic
dipole interactions are important, then these terms should :;f
also be included in the Hamiltonian.

A further justification exists in the classical limit of

the equation of motion, that results from this Hamiltonian.

it -~ "o (4.13a)

F S = = = e - e (r‘E) (4113b)

T L

22
dr __ (4.14) T
e

)
Jio
2]

which is the equation of motion for an electric field. Note
that the gradient of the nuclear potential merely adds an
additional electric field. If the full multipole expansion
were used as the Hamiltonian, the proper Lorentz force law

would result,
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Gauge Invariance and Stark Effect

The energy operator, given by Eq (4.8), satisfies both L

the requirements of gauge invariance and a Stark shift for

the total electric field. The Hamiltonian consists totally

'i of gauge invariant quantities. The momentum operator repre-
sents the kinetic momentum. The potential is the coulomb
potential of the nucleus. Finally, the electric dipole inter-
i; action term depends on the electric field, which is gauge i

invariant. In another gauge the Hamiltonian becomes

i} ﬁ-=&+e¢o -er - E=H (4.15) -

A~ ~ ~ A

since p” =p and r“ =71 . This differs from the previous
h \e case when p transformed to p - eyG , and p was the s-
canonical momentum given by Pp = mv % A . o

In the interaction term, the electric field is the total

field; thus, Stark shifts occur equally for either a longitu- Lw;
dinal or transverse field. This prevents the violation of

special relativity, as in the previous case. Furthermore, the

Stark shift for a transverse field provides a possible means éfr
of experiemental confirmation of this Hamiltonian, if strong -
enough fields can be generated. The previous choices pre-
dicted no Stark shift for a transverse electric field, only -
transitions between eigenstates. The other terms of the

multipole expansion allow shifts due to magnetic fields (the

.. Zeeman effect), quadrapole fields, and so on. - -
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With the new Hamiltonian expression for the energy opera-
tor, quantum descriptions of physical processes differ from Do
the predictions of the previous two cases. One significant DO
difference is that the energy operator is now a function of
time, and can not be transformed to a time independent form. o

The eigenvalues will then be functions of time also. 1In the

previous cases, the energy operator was either the unperturbed
Hamiltonian, HO , or transformed to the form of HO ;, SO
ti the energy eigenvalues were constant. 1In the end, the dif-

ferences in the predictions of the three Hamiltonians provide

a means to determine the correct energy operator by correla-

tion with experimental observations. e

Dynamics of the Multipole Hamiltonian

For a time dependent Hamiltonia, the solution of the
Schrodinger equation is not a stationary state. The expansion

coefficients of the state vector are time dependent. When the

_‘,‘ A A K

multipole Hamiltonian is considered as the atomic energy oper-
ator, the energy eigenstates and eigenvalues are also func-
tions of time. The resulting solution of the Schrodinger
equation involves a state vector whose expansion coefficients
and basis states are time dependent., 1In other words, the
interaction with light causes both a shift in the energy
states and transitions between the states,

In the electric dipole case, the Hamiltonian is

A =2 -
H(t) = 5= + e¢ (F) - eT + E(t) (4.16) ‘-




For optical frequencies and lower, the electric dipole form is
sufficient since there is little variation of the electric
field over the extent of the atom. The magnitude of the mag-
netic dipole term is a factor of 1/c¢ smaller, so it can be

ignored. Because ﬁ(t) is the energy operator, the energy

eigenstates and eigenvalues satisfy the instantaneous time

independent Schrodinger equation (6:289),
, B(t) [n(t)> = E (t) [n(t)> (4.17)

ﬁ, The state vector is then expressed in terms of the instan-
Y

taneous solutions

t

"
- ) _ i—. i )
i \e | > -;an(t) In(t)> exp [ih L E, (t1dt ] (4.18)

3

[ where a = are time dependent coefficients. The state vector
!

*i satisfies the time dependent Schrodinger equation

3 inig-‘gz=n(t)|\p> (4.19)

For ease of notation, the explicit time dependence of the
various terms will be dropped. Substituting Egq (4.18) into

(4.19) and simplifying,

. 1 t ) . 1 Ct ‘1
E an|n> exp | 7§ Endt = -};:an‘n> exp Igsoerdt J {1.20)

n O
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Multiplying both sides by <k| ]
f'l-'f_q
. - - . l_ - . ‘{ y
3, = E an<k]n> exp [ihs (En Ek)dt ] (4.21) o
n o el
This is an expression for the time rate of change of the ;3;
o expansion coefficients. An expression for <k|n> comes from ;aﬁ
q differentiating Eq (4.17) and multiplying by <k| o
Y
[ .
:j
'7 k o8 K|H|A> = 3Eq . o
" < lat | n> + <k|H|n> = <kfat | n> + <k[En[n> (4.22) I
3 -
For k #n , -
e
*Ep 3By S
<k|—8—E— | n> = 3T <k|n> = 0 (4.23) 1
-
<k|le‘1>=<k{Ek|f1> (4.24) -‘
=
Thus, Eq (4.22) becomes i
%
. <k|-g—2'|n> : ;::
<kln> = T n#k (4.25) g
n "k -
T
-
For the case of k =n , it is possible to put a condition o
on the phase of the eigenstates, such that <n|ﬁ> =0 (6:290).
The final relation for the coefficients is
{
. ay “H‘ t ,:
a, = = E : <kii— n> exp ig w dt - (4.26) 2
k 7 hugy 3t o Unk ;
40
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where

E_(t)=-E, (t)
W (8] = =2 LS (4.27)
h

This relation describes transitions between the time depen-
dent energy eigenstates,
The form of Eq (4.26) is considerably different than its

counterparts for the first two Hamiltonians, Egs (2.19) and

(2.31). The transition matrix depends on aﬁ/at , which is
- er*JdE/3t in the electric dipole form. The exponential
term contains an integral, since the transition frequency is
1 time dependent. Finally, recall that the eigenstates are ;A
functions of time, as well. 1In the previous case of the |

full Hamiltonian, Eq (2.30), the eigenstates are functions of

’ .
St
L e

’ .
\_‘ time, but are unitarily related to the unperturbed eigen- .-
states, simplifying the solution. Unfortunately, this is not

the case for Eq (4.26). These differences translate to a

ST
s P

. N 4 .

I VPSP B NP IR T |

significantly more difficult solution when applying Eq (4.26) L

e

to a particular experimental setup.

g

;Z Physical predictions using the multipole form for the
energy operator should differ from those of the unperturbed
or full atomic Hamiltonian. The choice of the energy opera-
tor is most important in describing such phenomenon as multi=-
photon processes, atomic lineshapes, non-exponential decay L:A
rates, and absorption sidebands. The difference in predic- igi
tions of the three models is a means of confirming the

- correct choice for the energy operator. Already, a possi- -




v s At alasana

e e e b o L e A o A e g e g g e P S s e o

bility exists in the Stark effect for a transverse electric
field. The multipole Hamiltonian is the only one that has an
equal dependence on the longitudinal and transverse electric
fields. Measuring a Stark shift for a transverse field
should distinguish between the various Hamiltonians. This

is not a trivial task, since very strong fields are required.
Another possibility is in the explanation of the absorption
sidebands for OCS in a time varying electric field, observed
by Townes et.al.(21:273-279; 22). Townes uses a perturbation
calculation, but the multipole Hamiltonian may yield a better
explanation. This is an area for further study.

In any case, the multipole Hamiltonian is a plausible
choice for the energy operator, and could be used to explain
many physical phenomena. In the next chapter, a multiphoton
process is examined to show the different predictions of the
three energy operators, and provide a means of experimental

confirmation.
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V. Three Photon Absorption Calculations

The ultimate confirmation of the multipole form of the
Hamiltonian as the energy operator depends on correlation
with experimental results. Comparison between the predictions
of Eq (4.26) and those of the other two choices, Egs (2.20)
and (2.31), should indicate the proper choice. One physical
process which has a significant difference between predic-
tions is three photon absorption. This last chapter details
the calculations for three photon absorption of the three
Hamiltonians. Order of magnitude differences exist, as well
as a difference in the resonant frequencies.

To simplify the calculations, a two level system is
assumed. This is a reasonable assumption, since many atomic
systems can be approximated in this way or forced into such
a condition. 1In addition, spontaneous emission is ignored
in the calculations, which allows much simplification of the
rate equations. If the experimental evaluation is made on a
time scale short compared to the spontaneous emission rate,

the assum»ntion is wvalid.

Calculations for H and H,

The Schrodinger equation for the full atomic Hamiltonian,

H , canbe expressed in the form of Eq (2.31),

. 1 lugmt

a, = T§ Z< gn]-e;-§|5m>ame (5.1)
m
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where the coefficients a, represent the expansion coeffici=-
ents of the true energy eigenstates. The eigenstates in the

a transition matrix are those of the unperturbed Hamiltonian,
ﬁolen> = en|en> (5.2)

If the atom is assumed initially to be in the ground state of
a two level system, then the time evolution of a, describes

Ek the absorption rate for a given electric field. The solution
of Eq (5.1) involves the use of time dependent perturbation
theory. For three photon absorption, third order perturba-

4 tion terms are required.

For a two level system, Eq (5.1) becomes a pair of

coupled rate equations:

. 1 A _ _iwot

a; = IK<€1|—er°E|€2>aze (5.3a)
h . 1 ~ o +iwot
i a, = {j<e,|-er«Ele,>aje (5.3b)
. where the transition frequency is defined as
o
‘ €97E

UJO = 2h 1 (5.4)

n and H” = -eT.E is the perturbation. Let the electric field

be linearly polarized, and defined as E = E coswt f , where

A

A is the orientation unit vector. Also define
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B’

A

u = e<el[;‘ez>-ﬁ (5.5)

The transition matrix for this two level system is

o -fucoswt
Hﬁh = (5.6)
-Eucoswt o
Egs (5.3) then become
. -iwot
a; = lgazcosmt e (5.7a)
. iwot
a, = iQalcoswt e (5.7b)
where Q = %g , is the Rabi frequency.
From time dependent perturbation theory, let
H* = - AeT+E (5.8)
(2)
= (0) (1) 2
a (t) =a ""(t) +ra " (t) + A"a, (E) + ... (5.9)
Substituting into Eq (5.1) and equating powers of ) ,
(m) C el 0kt e (5.10)
a, = 1% a, <k|H’|n>e .

o]
This equation expresses the mth order perturbation in terms

of the previous one. Egs (5.7) then become
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t -iw_ t
s . ms’ amVeogye & 0 at (5.11a)
y o
L; t +iw_t
i aém) = iﬂs a{m-l)coswt e ©at (5.11b)
- °
n

If the two level system is initially in the ground state,

aéO)(t) = an(O) = snl . The first order perturbation is
(1) _
; al =0 , and
(1) t iw t
a, = i?f coswt e o-dt
o)
-
»!
-l(wo+w)t_l l(wo-w)t_l
=8 1e e )
T2 w_+w * W =W (5.12)
e} o
>
d \eo . ]
This is the familiar first order perturbation calcuiation,
i which describes resonant single photon absorption. When g ;”5
-
approaches the transition frequency, Wy the second term S
becomes relatively large, and a, takes the form of a sinc ﬂff
° function. The sinc function has a series of sidelobes which ':;?
: S
are unphysical. This results from the unnatural assumption
of an instantaneous switching on of the electric field, and N
4
5 is not physically significant. ;
3
- The second order perturbation is o
‘:|
iw_ t —Hﬁ
" a{z)— iQS aél)coswt e © at (5.13) ‘“i
2 T
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1 4 2w(wo+w) wotw
‘-i(w -w)t -i(w +tw)t
2wy e °© -1 e o -1
+ 2 2 - * W tw
wo “w ‘”o w [e)
-2iwt
t e -1
+ - (5.14)

wo-w 2w(wo-w)

The third order perturbation uses Eq (5.14)

t
iw _t
a§3) = iﬂj aiz)coswt e © dt (5.15)
o

Expanding the integrand,

t i(w +3w)t i{w =w)t
NEI -1(9-)3 e © e O
2 5 2w(wo+w) 2m(wo+w)

2wt i(w +w)t i(w -wlt
0 . ( e © +e O )

W ~W

2wo e21wt 1 1 e—21wt
+ 2 2 W= + w_+w M W =W * +
W “=w o o o WoTw

Q

i(wo+w)t i(wo-3w)t
e e
+ - —~ dt {5.16)
2w(wo w) 2w(wO w)
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E. This equation finally yields the three photon absorption

- : term. When w=wo/3 , the last term becomes slowly varying,
ii and thus increases greatly after integration. It is the only
physically significant term, although other terms of the form

l/woiw are also slowly varying. These additional terms are

’

o ."'v.—‘v.~ v

essentially constant over the range of interest, mo/3 ;
thus, it is felt they are unphysical and a result of a limita-
{ tion in the perturbation approach. Further justification for
iz ignoring these terms is given when the final solution is com-

pared to an exact solution of this problem. Dropping the

unnecessary terms,

b
i(w =3w)t o
N N AN S

2 2 2w (w, =w) ,
o 'u&
[ - 4
i(w =3w)t ]
- <%>3 éwzwe-w)iw -3w) (5.17) ji%
o o el
T
For three photon absorption, w2w0/3 , there are no - fi
contributing factors from the first order perturbation, ii
Eq (5.12). The upper level coefficient is then a, = a§3) . =
The probability of being in the upper energy state is ‘:j
P(t) = la,(t)|? (5.18) B
2 2 : s
which can be written as <o
ERRR
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6 sin2%<wo-3w) t

-8l ¢
o wy=3w )
This equation represents the probability for three photon if!

absorption for the full atomic Hamiltonian. The resonant

frequency is w = m0/3 . P
As a comparison, the exact solution from Shirley (23:983-

985) is

3 4
i; sinZ%[ & 3 + (Bw=-w )ZJ £ t
6 4y ©
P_(t) = 81l Q [e]
2 256 4 4 (5.20)
w Q

o s+ (Bumw)

4w
o)
1

LA - . A A S
’

The two equations are very close for small t. When

4 , the equations are the same, and as w

2 ~4
(3w-wo) >> 0 /4wo
approaches wo/3w , they have the same 1limit., If t |is
large, the perturbation method is not valid, since the per-
turbation is assumed to be small. The favorable comparison ;t.

gives further justification for ignoring the extra terms of

Eq (5.16). The results from the perturbation calculation are

also comparable to the method of Autler and Townes (22). )
Treating the unperturbed Hamiltonian as the energy

operator results in a perturbation of the form

B = -e/nm:X’é , and after Eq (2.19), the Schrodinger equa- B 3

tion becomes J

~ iw ¢ e
- -1 _ e 3.3 nm "y
a, = % Z;< nl e A plsm>am e (5.21) -~
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The only difference between Eq (5.21) and Eq (5.1) is the
transition matrix. Kobe (13:626) shows that the matrix
elements are related such that

~

e =2 _ wpp 2o
<en|az Aeplep> = = <€n|er-E|€m> (5.22)

Thus, the development tor the unperturbed Hamiltonian paral-
lels the previous calculation except for a constant. Each
perturbation term changes by a factor of wo/w . For a
third order perturbation, the expansion coefficient is multi-
plied by (wo/w)3 . The probability of being in the upper

energy state is now

wo\ 6
P2 (t) (Zr) P:(t) {(5.23)

A.p

Thus, for Ho , the probability for three photon absorption

is

.21
81 56 sin §(w°-3m)t
256 4

Aep We (wo-3w)2

(5.24)

The result is about three orders of magntiude greater than

that of the full Hamiltonian.

Multipole Hamiltonian Calculation

The final calculation is for the multipole Hamiltonian,
which presents some distinct differences, primarily due to

the time dependence of the energy eigenstates and eigenvalues.
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The general method of solution is to solve for the instan- ?fﬁ
taneous eigenstates and eigenvalues of Eq (4.17), treating ¢t j{:
k
as a constant parameter. The instantaneous solutions can then L
be used in Eq (4.26), which can then be solved using time =
dependent perturbation theory. L
13
For a two level system, Eq (4.26) becomes a pair of e
coupled rate equations -
a ~ ‘ijt‘*’zldt‘ ;
8, =2 <1 4 15, o 7° (5.25a) b
1 hy at
f 21 -
- ('t .
b L N et 25 o
! a, = = <2|8t| > e (5.25b)
21 :
Solution of these equations is not trivial due to the time -
P
dependence of the eigenstates and eigenvalues. The energy S
eigenstates, |n> , are the instantaneous solutions of the ;
time independent Schrodinger equation f{h
-
H(t) [n(t)> = E_(t)|n(t)> (5.26) ;
The solution follows the method of Cohen-Tannoudji (1:406-408), -
420-423). The multipole Hamiltonian can be written as
A A L :
H(t) = Hj - er.E(t) (5.27) T
r
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Using the unperturbed eigenstates |5n> as the representation f}
basis set, H can be expressed in matrix form: =
; .,
€1 -ufcoswt iif
Hnm = <en|H|gm>= (5.28) '__--..::
-choswt €, ?1
where 1y is defined by Eq (5.5). Diagonalizing H__ deter- o
mines the true energy eigenvalues, ?
- 5
_ 1 h 2 2
El =35 (el+92) 5 9o +Q“cos wt] (5.29a)
E, = % (e,+c.,) + B|u_ +0%cos’ut (5.29b) :
2 2 1 72 2| 0 .-
where again
Qe .
€,=€
_ 8 _ €
“% T =%
The instantaneous transition frequency is E
€,= € % -
w (L) = Zh L. [w 2+choszwt] (5.30)
o
which oscillates in time, above the unperturbed value. The
oscillation may be the primary cause for such phenomenon as
multiphoton absorption and absorption sidebands. The eigen~- -
states, in the € representation are p
52
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l"- »
cosg sing S
1> = 12> = (5.31) Sl
-sing cosf i
where
Q Dy
tan26 = = o~ cosuwt (5.32) :
(o] -
The transition matrix of Eq (5.25) can now be determined
using Egs (5.5) and (5.31): 3
3H Z 93E .
LR T (5.33) :
JH - . _ 1 3H
<1l5gl2> = nwl cos26 sinwt = <2is7|1> (5.34)
From Eq (5.11), ..
w w ~
cos26 = 2 = -2 (5.35) ;
[w 2+522coszt.ot:]—g w e
o b
Thus, Egs (5.25) become o
t ;:. -
. wowQ -1 ow dt o
a; = -a, " sinwt e (5.36a) ;
(W]
t
] wowQ ‘ i ow dt
a, = a, 3 sinwt e (5.36b)
w -
These are exact equations, but approximations must be used to .
arrive at manageable solutions. -
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From time dependent perturbation theory, let [}{
~ N A — l-_.;4
-g—% = - ke}"—g% (5.37) jf::j
R
= a2(0) (1) 2 ,(2) o
a,(t) = a. (t) + Aan (£} + A a, () + ooo (5.38) NS
-

Substituting into Eq (4.26) and equating equal powers of A

~ t )
t JH -iS w . dt” T
- 2(m 2 :J 5 (m=1) <k'at|“>e o Nk (5.39) o
3 k B n hw oo
. n#¥k o nk ]
b K
- This equation is comparable to Eqg (5.10). i
‘] If the two level system is initially in the ground state, i}f
. T
T the first order perturbation for the upper energy level is o
t !
t .s » »> -
il w'dt -
(1) _ ULMMOQ . o S
a (t) = sinut e -]
2 2 .
w )
o P
3 4
n.
w?’ = [moz + choszwt] (5.40) :
The instantaneous transition frequency w“® can be expanded R
%wj
2 0]
- Q 2 B
W = W + i cOs u)t + ee (5;41) ki
o} 2w0
o
4

Higher order terms can be ignored provided 94/4w0 << 1 .

- -
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The integral in the exponential becomes

t

2 2
Jw’dt‘=wt+ﬂ t4-Q
o

as will be shown later. This shift is

strength, E , Which demonstrates the
transverse field. The exponential can

of Bessel functions (24:361):

® eilzsine - Jn(z)elne
n=-oo
For 1z << 1 (24:358),
n
Jn(z) = I' (n+l)
Using J_ = (1) and (1) =T(2) =1 ,
2
i- sinwt 2
e 8wow > 1 + i sin 2wt
8wow
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4 sinwt
o} 4wo 8wow
. 2
= W t + 8wow51nwt (5.42)
where wé = w, + 92/4wO is the shifted transition frequency,

a function of the field
Stark effect for a

be expanded as a series

(5.43)

(5.44)

NN
" PP

S PP

PR

(5.45)
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Ignoring the higher order terms, the exponential becomes

gt

il wdt -~ . .
J it 2

e voO e O (1 U U siant) (5.46)

8wow

Expanding the demoninator of Eq (5.40),

2 4
= -if 1l - 2L3 coszwt + QZ cos4wt +e0e (5.47)
wo wo w

Finally, Eq (5.40) becomes

t 2
9]
aél) 25 %— <l - Q—Z coszwt) sinwt

w
o O o

QZ lwot
x{1l + 50 G i sin2wt ] e dt (5.48)
o

which is directly integrable, although messy. Expanding the

integrand and dropping terms of higher order than Q3 ’

L}
L
.'l."'v'.'-" el

A .l'-"
s et e
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a(l) _ W L - Q2 _ QZ el (wo+w)t
2 2w 1 4 2
O

Wq leow

+

2 2 i(w =3w)t
Y + 2 s e °© at (5.49)
leOw 4w

o
Notice that.only odd harmonics of w are present in the expo-
nential terms. Absorption occurs only when a term becomes
slowly varying, when the exponential argument approaches zero.
Therefore, only an odd number of photons can be absorbed, in
this model. The conclusion corresponds to the conservation

of anqgular momentum. The angular momentum must change by one
unit in the transition, and photons have one unit of angular
momentum. Only odd combinations are possible.

Integrating Eq (5.49)
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i{w +w)t
(1) —w? 02 02 e ° -1
a T 2w L- 2
4wo leow w_+w

i(wo+3w)t

. ( p®  _ _q? ) e -1
2 .
l6wow 4wo wo+3w

2 2
+ < e + 92> e (5.50)

»

gets relatively large whenever « approaches '

(1)
a, o

the shifted transition frequency, or wé/3 , three photon
absorption. If w=w5/3 , then only the last term is of im-

portance, and since w w ’

N P i, .
(1) =i 7 g3 sinj(wi-3wlt Flwi-3w)t
a2 - 4—8' 2 — P e (5.51)
w w5 —3w

It is necessary to calculate higher order perturbation
terms since they contribute terms of order Q3 . Recall
that since the atom is initially in the ground state, the

perturbation terms a{l) = aéz) =0 . But,
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2 w,2

& t
w_wf -is wdat”
a(2)=-J all) 2 sinute Jo  at (5.52)
which is similar in form to Eq (5.40). Expanding the inte-

(1)
2

grand as before, using Eq (5.50) for a , and dropping

higher order terms of  results in an integrable form. The

(2)
1

solution of a is then used in the calculation of the

third order perturbation:

£ t
w_wh iS w’dt”
al3) - J al?) o ginwt e Jo at (5.53)
(o]

1 © 2

Again, 1if w:w$/3 , only one physically significant term in
the integrand is slowly varying. Other unphysical terms are
also slowly varying, but these can be ignored as in the

previous case, Eq (5.16). The perturbation term becomes

3 (t i(wé-Bw)t
ald) oo (el e dt (5.54)
2 2w, 2iw (w -w)
o) o
The result of the integration can be expressed as ;y;
_ ]
3 sind(pr30)t  E(y -39t B
(3) i 2 WoT W 2\ W W -
a xS e (5.55) .
2 48 2 (w?=3w)
wo wo w

The final expression for a, is a, = aél) + a§3) , which

from Egqs (5.51) and (5.55) is
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.1, . i, .
3 Slni(wo-3w)t eE(mo—3w)t

- - 9)
a, = -1 ” 5 ) (5.56)
o) o
The probability of being in the upper energy level is
2
Py(t) = |a,(t) ]
6  sin®i(u’-3w)t
= 2 20
64wo (wo-3w)

which represents the transition for three photon absorption
with the multipole Hamiltonian. The resonant frequency for

this transition is

T35 (5.58)

The results for the multipole Hamiltonian, Egs (5.57)
and (5.58) are much different than those of the other two

Hamiltonians.

Comparison of Predictions

Calculations for the three Hamiltonians shows consider-
able differences in the predictions for the probability of a
two level atom, initially in the ground state, to transition
to the upper energy level. In each case, time dependent
perturbation theory was used to determine the probability.
The method is valid for relatively short time periods,

. L

otherwise effects such as Rabi oscillations and spontaneous fﬁ*
-

N

A
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emission become important. 1In addition to the transition
rate difference, the multipole Hamiltonian case also showed
a Stark shift for a transverse electric field. The first two
Hamiltonians do not account for such an effect,.

The differences in the upper level predictions is most
easily seen for radiation that is exactly on resonance,

u:=wo/3 . The probabilities for the three cases are

6
_ o3 _81 Q 2
PZAp(t) =9 1022 — 3 t (5.59)
w
o
b (t) = 8L 20 2 (5.60)
2rE 1024 2 :
w
o
6
_ Q 2
Poyg (t) 7 t (5.61)
256w
o
Thus,
P, =102 p,__ = 2x10% p (5.62)
2Ap 2rE 2MH ¢

This demonstrates the order of magnitude differences between 5:@
R
the three choices. These differences are directly translated ;fﬂ
RRRS
to comparable differences in the absolute transition rates or Lo
the Einstein B coefficients. The rate for the multipole f
Hamiltonian is the smallest by a factor of twenty. If the '5
absolute rate could be measured, it would strongly indicate }11
N
the correct choice for the energy operator. -;E
,'\\::*
e
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Absolute transition rates for a three photon process :ci
are, unfortunately for this problem, difficult to measure. o]

First, there is a requirement for a very strong field to NSNS

v o
DR

obtain an appreciable amount of transitions. Assuming a
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sufficient source is available, there are problems with the

!
L]

s
.

media itself. 1In crystals, the problem of wave vector

:
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e,
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matching (25:76-78) severely hinders absolute measurements.

»
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The problem is non-exponential absorption due to inter-

ference effects in the crystal. Another possibility for an

experiment is to measure the deflection of an atomic beam by

3 radiation pressure. An incident light wave can cause a beam jfﬁ
F deflection based on the absorption rate (26). The primary

: difficulty with this confiquration is in generating a stable L

) .
s, S A
Y S SR NV N ) 'i "

beam that is slow enough to have a reasonable interaction

»
[N

time.

Y

The other major difference in the predictions was the -
resonant frequency shift predicted only in the multipole LA
Hamiltonian case. Considering either the unperturbed or the
full atomic Hamiltonian as the energy operator allows no ;ﬁh
shift due to a transverse electric field, although such shifts -
have been observed for time varying fields (22). The predic-
tion of this Stark shift for the multipole Hamiltonian may be

the best argument for this choice as the energy operator. S
1
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VI. Conclusion

The choice of the correct form of the Hamiltonian as the

:
b
g

energy operator has significant implications for physical pre-
dictions in guantum mechanics. Historically, two choices have
been predominant: the unperturbed Hamiltonian and the full
atomic Hamiltonian. Each results in different predictions as
indicated by their respective transition matrices. This
difference is often clouded by the equivalence of these two
forms under a unitary transformation. The argument for
equivalence is valid, based on interpretation of the eigen-
states, but it does not address the identification of the
atomic energy operator. This thesis has argued that both of

, these choices are limited due to conflicts with either observed

t" phenomenon or physical laws, and neither represents the true

energy of the atom.

Another possibility for the energy operator exists in the
multipole expansion form of the Hamiltonian. It is derived
from the classical multipole energy expansion, and has the
correct classical limit of the Lorentz force law. The multi-
pole form is gauge invariant, and contains the total field,
so it does not violate special relativity. The dynamics of
this form aremuch more complicated than the previous cases,
which compounds the difficulty of making physical predictions.

Thus, for the purposes of first order approximations, the ;11
unperturbed or full atomic Hamiltonian should prove to be an ﬁ%q




i N AR S T W W T Ty Ty

adequate, though not completely accurate, choice for the
energy operator, For finer applications, the multipole form
may provide the better model for the atom, and hence, a more
accurate explanation for physical processes.

Calculations for three photon absorption demonstrate
the differences between predictions of the three choices for
the energy operator. Order of magnitude differences exist
for the probability of transitioning to the upper state of
a two level atom., These directly translate to comparable
differences in the absolute transition rates. The multipole
Hamiltonian has a further distinction of predicting a Stark
shift for a transverse electric field. The other two Hamil=-
tonians do not allow this shift in the respective models.

Experimental confirmation of the absorption prediction
or the Stark effect due to a transverse field is the final
proof of this thesis. Unfortunately, measurement of an

absolute three photon absorption rate is a difficult task,

and has not been performed. This is an area for further ::5
investigation. 1In addition, Stark shifts have been observed
in numerous experiments (22). Further study of those experi- ;:3
mental results and the methods of analysis is warranted.

The Stark effect may provide the best confirmation ¢f the

correct energy operator,

Another suggestion for future work is to consider the

-
TP EPY VPG

.
o

affect of spontaneous emission in the absorption calculations.

The steady state solution to a density matrix perturbation r
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calculation should give the absorption rate for long inter-

action times, and spurious zero frequency terms, previously
disregarded, should be damped out.

Other recommendations include the investigation of
absorption sidebands, observed by Townes (21:273-279), and
atomic lineshapes. These areas may provide further arguments
for choosing the multipole Hamiltonian as the atomic energy

operator,
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